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CRITICAL MACH NUMBERS OF THIN AIRFOIL SECTIONS
WITH PLAIN FLAPS

By Max A. Heaslet and Otway O'M, Pardee
SUMMARY

The critical Mach number, as a function of lift coef—
ficlent, 1s determined for certain thin and moderately thick
NACA low—drag airfoils, The results, which are given graphi-
cally, include calculations on the same ailrfoil sections with
plain flaps for small flap deflections, Curves are presented
indicating optimum eritical conditions for the alrfolls with
flaps and are in a form so that they may be compared with
corresponding results for zero flap deflections,

The calculatione indicate that, through the use of plain
flaps, an increase may be realized 4in the lift—coefficient
range for which the critical Mach numdber is in the region of
high vaiues characteristic of low—drag airfolls,

INTRODUCT ION

The necessity of attaining higher speeds and higher
altitudes in military aircraft has fecused increasing atten—
tion on the critlcal speeds of the alrfoil sections used and,
as a result of investigzations concerned with the calculation
\ of these critical speeds, certain properties of favorable
i airfoll sections have become known. For example, it 1is
~possible to say as a general conclusion that the type of

pressure distribution associated with low—drag airfolls is

one which is also favorable to the production of high—critical—
speed characteristics, Moreover, as pointed out in refer-—

ence 1, the thickness ratio and the camber of a wing section
Play an important role since the maximum value of critical

Mach number decreases approximately linearly as the camber

and thickness of an airfoil increases, It has therefore been
almost inevitable that the airfoil sections used on recently
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designed high—speed aircraft have had the type of pressure
distribution associated with the low—drag airfoil and have
been thinner than those used formerly.

Critical~speed curves, such as are given in reference 1,
show that the low—drag airfoil has a region of 1ift coef-
ficients, more or less symmetrically disposed with respect
to the design 1ift coefficient, in which the critical Mach
number variation is small, the maximum critical Mach number
being achieved within the region, Outside this sector,
which corresponds roughly to the lift—coefficient range for
which the low—drag properties of the airfoil hold, there is
a sharp decrense in the value of critical Mach number. It is
obvious that a2 particularly advantageous siltuation exists if
i1t is possible to design the wing section of an airplane so
that the high—critical—-speed and low—drag reglons of the
wing extend beyond the lift—coefficient range for normal
operations, The difficulty of achieving this has already
been encountered in the design of fighter aircraft where
d emands on the maneuverabllity at high speeds are great,

The problem arises again in the case of long—range bombers
gince, on extended flights with attendant fuel consumption

and with the accompanying disposal of bomb loads, the vari-
ation of 1lift coefficients required may be quite large. The
situation 18 particularly acute for Jet—propelled bombers
since high speeds are possible of attainment over a wide range
of altitude,

The theoretical results of reference 1 show quite clearly
that, as the thicknesg of an airfoil section decreases, the
maximum critical Maeh number is increased dbut that this in-
crease is brought about at the expense of the lift—coefficient
range for the high—critical—speed region, Thus, the high-
speed requirements in the design of an airplane may call for
a thin wing section while other specificat ions may be such
that the extent of 1ift coefficlents needed at high speeds
extends beyond the natural range of the airfoil, As a conse-—
quence, it becomes highly desirable to investigote any method
whereby an extension of this range may be effected. One such
method which could presumably be used for this purpose is
the use of full~span plain flaps, for in this manner the
camber may be modified and the load distribution over the air-—
foll disposed so that the sharp growth of the pressure peak
near the nose 1s regstricted.

In the present report, calculations have been carried
out at the reguest of the Air Technical Service Command,
U. S, Army Air Forces, to determine the critical Mach numbers,

SRR
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as a function of 1ift coefficients for the NACA 64—, 65—,

and 66—series low—-drag airfoil sections with thickness-—chord
ratios equal to 0,06, 0,08, 0,10, and 0,12. These sections
have constant ideal 1ift coefficients of 0.2 at which 1ift

the load is distributed uniformly over the chords. Another
portion of the theoretical calculaetions 1B devoted to the
determination of the critical Mach numbers of these same :
airfoil sections with plain flaps, for small flap deflections,
in an attempt to study the effect of such flaps on the ceriti--
cal Mach number curves of the airfoills.

An experimental investigation has also been carried out,
under the same general research program, to determine the
Mach numbers at which the force and moment characteristics
of the same sections with flaps are divergent, This investiga—
tion is to be reported separately and will contain a compari—
son of the theoretical critical results with the experimentally
evaluated divergence Mach numbers.

A complete list ¢f symbols, as used throughout thils report,
may be found in the appendix.

ANALYS IS

Computation of Critical Mach Number

It is now an established convention to define the critical
Mach number of a body as the Mach number of the free stream
for which, at some point on the surface of the body, the
fluid first reaches a velocity equal to the local velocity
of sound. In an analogous manner the critical compressi-—
bility speed is defined as the free—-stream speed corresponding
to that at which the eritical Mach number is attained. Ex—
Perimental evidence, ebtained from the study of airfoil
sections, indicates that compression shocks are formed
locally on an airfoil surface soon after, if not coinci-
dental with, the attainment of Mach numbers corresponding %o
the eritical speed. This shock, however, is not well defined
and, so far as can be observed, no strongly developed shock
front exists until the free—stream Mach number has risen some—
what above its eritical value. It thus seems quite reason-—
able to assume, and this has been further substantiasted by
experiment, that for airfoils of limited thickness the
critical Mach number furnishes a conservative approxi-—
mation, for the designer, for the occurrence of the flow.
breakdown which 1s associated with super—critical speeds and
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produces the sudden changes in the alirfoil characteristics
that are, in general, inimical to good airplane control and
performance.

The critical Mach numbers in this report are calculated
in the manner used in reference l. Under the assumption
that the flow is issntropic, the eritical pressure coef—
ficient is given by the relation

Y
i -~ P -
cr 0 2 2 Y-1 .2 1
TR +§1Mcr> —1] (1)
% cr +1 +
where
Py static pressure in the free stream
Per pressure corresponding to sonic velocity at Mcr
and occurring 2t minimum pressure point
Vo velocity of the free stream
a, velocity of sound in the free stream
L critical Mach number, egqual to Vo/a° at critical
conditions
Y ratio of specific heats (cp/ey = 1.4)
Po density of the fluid in the free streanm
dynami r 1 v 2
q, yn ¢ pressurse ( zpo o )

In order that . M,,. be related to the low—speed pressure

P—P
Q0

coefficlent PM=O =< 3 MO it is necessary to expregs the
M=

left—hand side of equation (1) in terms of Py.g 2and to this

end the Kédrmdn-Tsien formula (reference 2) has been used,
Equating this result, evaluated at the critical value of M,
to the right—hand side of equation (1), gives the requisite
expression



NACA ACR No. 6A30 - - " ] 5

2 Tt =

: “L\yx1 - y—=y ©or e M3
Mz, N2 TR . ME: PN=0

y Pa.
=T M=0

2 [ 2, Y1 e ) I —1}

1-¥or

1+ /1IN o
(2)

For an airfoil, or an airfoil with flap, if 1t 1is
posaible to determine the pressure distribution for a gliven
low—gpeed 1ift coefficient, then the critical Mach number
of the airfoil can be found by means of equation (2) together
with the value of pressure coefficient at the minimum pressure
point. As a result of such calculations, the critical Mach
number of an alrfoil is found as a function of the low—speed
section 1lift coefficient, Cly=0°* For design, however, it

i8 highly desirable to know the actual 1ift coefficient C 1y

corresponding to the Mach number of flight. In reference 3,
Glauert has developed the aprroximation

which does relate the low— and high—speed 1ift coefficients,
and in this report the Glauert correction has been applied.
Experimental observations show that the accuracy of this
correction 1s good for Mach numbers up through critical values.

Calculation of Pressure Distributions
for Airfoils with Flaps

The theoretical calculation of airfoill pressure distribu-
tions has been outlined in reference 4, and in this reference
tabular deta are given whereby the pressure distributions may
be calculated immediately for all standard NACA ajirfoll sec~
tions with various types of camber lines. The velocity
distribution over the airfoil is considered, in conformity
with present theory, to be forued from three separate and
independent parts:

1. That part of the velocity distribution associated
with the basic thickness form set at zero angle
of attsck
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2. That part of the distribution associated with the
design load of the camber lilne

3, That part of the distribution associated with the
additional load distridbution and related to the
angle of attack of the alirfoll

As & result of this theory 1t is possible to express
the pressure coefficient Py-o 4in the form

v Au Av 2
Py=0 = ..(_~ x & B (3)
M=0 1 7 v
°
v AOu Ava
where T T and 7 are velocity ratios cerresponding
o) o o

respectively to parts 1, 2, and 3. This method has been used
throughout the present report for airfoils with and without
flaps, and the airfoil data in reference 4 have been used in
all cases.

For an airfoil with plain flap it is necessary to find

Au Av g
the effect ¢f the flap on the values of 7 and V-'
o °

and this can be best achieved by first calculating the change
in the load distribution over the airfoil which is drought
about by the flap deflection. In reference 5 this problem
has been treated in a semiempirical fezshion for the case of
conventional airfoil sections, but the theory is not immedi-—
ately applicable to low—drag airfoils and, for this reason,

a different approach is made modeled on the work of Glauert
in reference 6 and Allen in reference 7.

It is an accepted practice to divide the chordwise 1ift
distribution P of an airfoil into two parts: (a) the so—
called "basic" 1ift distribution P,, which depends en camber—

line shape and is indevendent of the angle of attack; and (Dd)

the additional 1ift distridution Pa' which is variable with

angle of attack and in form is independent ef the camber—line
shape. When the flap on an airfoil is deflected, the change
in 1ift distribution 1is c¢alled the incremental 1ift distri-
bution PG’ and the two component parts are respectively,

incremental basic distridution Pbsv and incremental
additional distridbution Pa&‘ It ¢can be shown that the

. -/
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incremental additional distribution due to the deflection of
the flap is identical in form with the additional distri-
bution for the airfoil with flaps neutral, Theé incremental
basic distribution must be evaluated., however, from a knowl-
edge of the airfoil section, the nature of the flap, and the
flap deflection., The determination of this variation is
therefore undertaken in the following paragraphs,

In conformity with the massumptions usually made in
thin—airfoll theory, the airfoil is replaced by its mean
camber line, Fizure 1 shows the assumed camber line distri-
bution produced by the deflection of the flap, the hinge point
of the flap lying between x; and xz, AF approximating

the chord—~line of the airfoil. If x 1is measured from
point A along AF and y is measured from A along a line normal
to AF, then in the Tigure

nA

<

AB 1is linear with equation y=0 for O p X3

BC 1s parabolic with equation y = ax?+bx+d for
< <

X3 X = Xg

CD is linear with equation y—~ya ~tan & (x—xg5) for
< <

Xz = x = ¢C

where a, b, and d are arbitrary coefficients and §

is the angle the flap 1s deflected, The parabolic section

s to extend over a very swmall portion of the camber line,

the extent of this section being determined later, and is
introduced to avoid the sharp bresk in slope which theoretically
would exist and the subsequent requirement of a singularity

in the velocity and 14ift distribution at the hinge point,

This small portion between B and C may be thought of as a
falring of the camber line at the point of the sharp break

and is consistent not only with the existence of a boundary
layer on the surface of the airfoill, for the layer has a
tendency to iron out such abrupt irregularities, but also with
the geometry of the median line between the upper and lower
surfaces of the sirfoil,
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If the transformation
x = 2o (1 — coas 9)
2

is introduced, the expressions fer the slopes of the three
zections maoy be written in the forms

a < <
AB: L =0 fer OS89,
dx
< <
BG: %X = 2ax + b for x3; = x = xz
x (4)
A < <
= G cos & + H for 8, = 8 = d,
CD: iy - - tan 8§
dx
< <
= — A for ea=e=’ﬂ'
"where G, H, and A, are introduced for egimplicity and
are defined by the above equations.
Reference 7 establishes the relationship
Py m 6+8 66
<0 > =—lfc—lz<cot 2 . cot °>d9 (5)
4 74 2 o dx 2 2
where
of b
<—~* basic distribution for infinitesimally thin airfoll
4+ 7, at chordwise station corresponding te 6 = 8,
) variable of integration
LI value of © at sn arvitrary fixed point
%X slope of camber line
x

It is ebvious that this expression can be used in conjunction
with the slepes given in equations (4) to determine the
incremental baslic distribution due to the flap deflection.
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The integration of the integral is straightforward and the
final result is . . - : ,

sim%(92+ 8,)

E
(1] G A

4 7/, n m sin%(Qo-ag)
1 ain%(ez*eo) sin%(91+3o)
— —(6 cos 8+ H) 1n £ (
n sin§(91—9°) sin%(92+9o)

For a given flap deflection of § degrees the value of
A 1s known and it merely remains to fix the coefficients
G and H and determine 9, and 8, 8o that the theoretical

incremental basic distribution is consistent with experiment,
Impose now the condition that at x = x, (8=6,) the parabdola
has zero slope and a radius of curvature equal to r, This
requires that

¢ = — 4 H ° 0
= e—— an e eee—— CO0S .
2r 2r 2

]

Moreover, at x = xp (9 z) the slope of the parabola must
equal =-A, thus

c

— (cos 8, — cos 8,;) = —A

2r

and if

oln

w A, and ©,; are known, it 1s possible to find
8,46,
2 ]
parabola car be oriented so that the values of & at its
end points are symmetrically disposed with respect to 6 at

the hinge point and for small flap deflections ©, and 6,
can be found.

8., Letting the hinge point of the flap bde at

the

Using equation (6) and the derived values of the various
parameters, a comparison was made between calculated values
of incremental basic distribution and availlable experimental
data for small flap deflections, It was found that when r
was set equal to the thickness of the airfoil at the hinge
roint the agreement was quite good over the entire airfoil
surface and that at the hinge point, where maximum values
of Phs are attalned, the results were reasonably accurate

- T TeR

6)



NACA ACR No, 6A30 R _ 10

te justify the use of the theory to calculate critical Mach
- aumbers., SR

By the methods of reference 7 1t fellows that

G
c, = 2\ sin 85 + G(8.-0,)+ — (sin 20— sin 28,)
b8 2
+ ZH(Bin 8, — 8in 61) (7)
and
i, = 2A(n—8,) —2H(0-.—8,) —2G(sin 8.~ sin 8,) (8)
where
c;bs incremental baslic 11ft ceefflcient
Clag incremental additional 1ift coefficient

Since 6.0, is small, for small deflections ef the flap,

it 1s possible to approximate equations (7) and (8) by simpler
expressions and this was done in the galculations. Under the
same assumption, the peak point of the lncremental basic 1ift
distribution is at the hinge point and can be approximated
quickly.

The relation between the velocity distribution and the
chordwise 1ift distribution over the airfoil has been given
by Allen (reference 8) in the ferm

1
(3%) = vizFy rsl (2)
= - R Q
Ve /u t s
and lP
"-v"‘) = JI- ;_—- ———i":r—_ (10)
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where
oy B} i
V—> velocity over upper surface of airfoil
°‘u
v
<7—> velocity ever lower surface of airfolil
‘1
Pf pressure distribution over base profile
P load distridbution over airfolil

Since the contritution of the flap deflection to P has been
calculated, the effect on the velocity distridbution can be
determined. Substitution in equation (3) will give the low—
speed pressure coefficlient at any point aleng the airfoil;
and, from the minimum pressure, the critical speed of the
section is determinable. In calculating the contridution

of the incremental basic l1ift distridution to the velocity

en the surface of the airfoil, it 1s well to bear in mind that
the expression for Pys given in equation (6) was derived

under the assumptions of thin airfoil theory. In reference
7 i1t has been pointed outthat t» a first order of approximation

Pyps = JI=Fr Pys

Hence, it follows that the incremental velocity assoclated
with this portion of the lift distribution is given by

zons. The final form ef equatien (3) may therefore be

written as
- v Au ov 1 2
P, . =1._<__i__:t .._§~.=t__1=>
M=0 o' b8
Vo Vo v, 4

aAu .
where ;—~ is determined from the design load of the basic
o

1l
camber line and Zpbs is & function of the flap—chord ratio

and the deflection angle of the flap.

L~
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DISCUSSION OF RESULTS

In figure 2 are shewn the critical curves of a typical
airfoil section (NACA 65,—210) for various flap defiections,
both positive and negative.

It is to be observed that each critical curve is composed
of three distinct partes: a substantially flat top and two
steep sides. These three portions correspond to three differ—
ent conditions on the airfoil determining the minimum pressure
pealk.

The thin airfeils considered are characterized by having
large additional velocities near the nose and but a moderate
rise in the basic velocity distribution apovro=ching the maxi-
mum—velocity point. The combination results 1n a velocity
distribution which is double—peaked for 1ift coefficients
differing more than a small amount from the design 1ift,

The velocity peak at the nose arpears suddenly, the after
velocity peak still remaining; there is no continuous tran—
gition. For a certain range of 1ift coefficient about the
design 1ift the forward velocity peak is less thsn the rear
ene; for this range the critical Mach number is determined
by the velocities near the maximum—velocity point of the base
profile modified by the small additional velocities for this
region. This latter velocity pesk will be termed the mid—
peak velocity te distinguish it from velocity peaks which
appear at hinge points on flapped airfoils to be mentioned
later. This ranve of 1lift coefficient corresponds to the
top of the critical curve. The small additional wvelocities
produce a near linear change in Mach number with 1ift coef-—

ficient, giving to the top a slight slope as shown in figure
2.

At some 1ift coefficient, the velocity at the forward
pressure peak becomes equal to the velccity at the midpressure
peak; then for large increments of 1ift from the design 1ift,
the peak velocity at the nose is the maximum and changes
rapidly with change in 1ift ccefficient due to the larcge
additional velocities. The result is that the critical Mach
nunber falls rapidly with increasing increment in 1ift coef-
ficient. The 1lift coefficient for which the velocitiez at
the nose and midpressure peaks are egual is the point of
intersection of the top and the side; it is the point at
which the absolute maximum velocity Jjumps from a position
aft on the airfoil section to a point in the immediate
vicinity of the noge and will be denoted as the "declinatien
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point" on the ceritical curve. There are two such declination
points, for positive and negative 1lift increments. For posi—
tive 1ift increments the velocity peak at the nose appears on
the upper surface; for negative 1ift increments it appears

on the lower surface.

Since airfoils with flaps are equivalent to the original
airfoil with modified camber, the effect is to change the
basic velocity distribution while leaving the additional
velocity distribution the same, The critical curve, then,
for the flapped airfoil is very similar to the unflapyped
but shifted a2s a whole by czbs. The gsteep sides are

practically parallel, for the incremental basic velocity at
the nose is negligible. The only appreciable change occurs
in the top and the declination points.

For flap deflections small enough that the velocity peak
et the hinge point is less than the midpeak velocity, the
top of the eriticsal curve will have essentislly the same
slope, since the airfoil has the same additional wvelocitles,
but is shifted up or down derending upon whether there is a
negative or positive flap deflection. The increment of 1ift
coefficient between the upper and lower declination points
will consequently vary.

For flap deflections large enough that the pressure peak
at the hinge point is greater than the midpeak pressure, the
top of the critical ocurve has a lesser slope than before, the
additional velocities at the hinge point veing less., It is
to be noted that for negative flap deflections the peak
veloclty at the hinge point appears on the lower surface
vhere the additional velocity increment with 1ift coefficient
ia negative; conseguently, the top of the critical curve has
a reversed slope to that of the unflapped and positively
flapped airfoils, This is clearly shown in figure 2.

The locus of the upper and lower critical Mach number
declination points together with the top of the critical
curve form what may be termed an "optimum critical curve,”
All points on this curve correspond to flap deflections for
which, at a given 1ift coefficient, the airfoil section
achieves the maximum possible critical Mack number, as can
be seen in figure 2,

The extension of the region of high critical Mach number
by means of flaps is done in two parts. The first, where the
hinge pressure peak is less than the midpeak pressure, is a
near linear extension of the original curve. In this region
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a reasonable gain in 1ift coefficient is realized without too
much sacrifice in the critical Mach number. In the second
part, after the break, the hinge peak predominates; the
sacrifice in eritical Maeh number for increased 1ift is
correspondingly greater,

In figure 3 are shown the optimum critical curves for
the NACA 64—, 65—, and 66—series of airfoils having thickness—
chord ratios of 0,06, 0,08, 0.10, and 0.12 with 0,10¢, 0.20c,
and 0.30c plain flaps. The critical curves of the original
airfoils without flaps (6=0) are in each instance shown as
dotted l1ines. The rest of the critical curves for other flap
deflections are not shown, as was done in figure 2, but rather
only the locus of the declination points. These loci, as
noted previously, form optimum eritical curves for the given
airfoils with flaps., ZXach of the curves in figure & has a
form directly anzlogous to the optimum curve of figure 2,
having the typlecal extansion, for small flap deflections,
of the hish—critical—speed lift—coefficlent range.

There are two predominate variations to consider: section
thickness and airfoil family. By family, reference is made
to the position of the velocity peak on the base profile,.
The curves show a general trend to higher critical Mach numdbers
and smaller lift-coefficient ranges for the thinner sections.
The ertension of the lift—coefficient range by means of flaps
shows this same tendency though to a lesser degres. The
decresse in the extension of the lift—coefficlent range for
the thinner sections 1s the result of higher velocity peaks
at the hinge point, together with a smaller variation in
velocity along the base profile so that the break in the
curve occurs sooner. The larger peak velocities for the thin
sections are due to the fact that the value of the peak
velocity varies inversely as the section thickness at the
hinge point.

The additional velocity distributions of all the 8-series
airfoils considered are substantially the same over the rear—
ward 80 percent of the chord. PFor this reason, all the slopes
of the tops of the critical curves in any given airfoil family
are essentially the same (cf. fig. 3(a) to 2(da)). The slope
for different airfoil families will be different as indicated,
(ef. fig. 3(a), 3(h), 3(1)) the slope decrensing for a rear—
ward movement of the maximum velocity point on the base
profile.

For the different families a rearward movement of the
maximum velocity peak is indicative of three changes in
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section characteristics: a lower maximum velocity and flatter
profile velocity, greater additional velocities at the nose,
and a thicker section at the hinge point giving lower velocity
peaxs there., Thus, a rearward movement in pressure pesk re—
sults in slightly nigher critical speeds with, however, a
smaller range of 1ift coefficient in the high critieal region
together with a smaller extension of this range by the flaps.

The extension of the critical curve of an airfoil by
means of flaps will vary with tke flap—chord ratio, the dif-
ferent optimum eritical curves being, however, quite similar.
A study of the curves given in figure 3 indicates that, of
the flaps considered, the 0.20c¢ gives the best over—all re—
sults.,

Experiments carried out in the Ames 1l— by 33~foot high-
speed tunnel, on airfoils equipped with orifices for the
determination of pressure distributions, have given some in—
sight into the validity of theoretical calculations of
eritical Maech numbers, The sections considered had thickness—
chord ratios egual to 0.12 and 0.15, the results being con—
pared with those given in reference 1, It was found that,
throughout the high portion of the critical—speed curves for
the low—drag alrfo1ls, excellent agreement was obtained ex—
cept that the points of declination of the curves were at
1ift coefficients somewhat beyond those predicted, especilally
for the case in which the peak pressure point was forward on
the upper surface. The source of this discrepancy is probably
twofold: some error exists in the estimation of the true
1ift coefficient, and the Xarman—Tsien correction formula
is erroneous in the immediate vicinity of the nose, It is
possible to derive a modification of the Glauert correction
for 1ift, by means of the Kdrmédn—-Tsien pressure formula, and
the change brought about in 1ift coefficient can be shown to
be in the right direction to agree with experiment. This
change, however, is small and somewhat laborious to apply anéd
therefore was not used, That errors in predicted pressures
. should exist near the nose of an airfoil follows from the
fact that the Korman—Tsien formula is postulated on the use
of a pressure-~density relation which holds for conditions not
differing grently from those in the free stream, XNear the
nose, in the vicinity of the stagnation point, some dis—
erepancy would be expected to occur, and this is confirmed by
the experimental pressure distributions.

Considerations of theory and experimental results both
indicate that the theoretical results are conservative. It
1s to be expected, however, that, for airfoils with flaps,
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the predicted extensions of the curves should be of the right
order of magnitude. .. .. _ _

CONCLUDING REHARKS

Theoretical calculations show that the use of plein flaps
on airfoll sections such as are considered in the present re—
port will serve to increase appreciably the range of the high—
critical Mach number region characteristic of low—drag sair—
foils. It is to be expected, judging from what experimental
evidence 18 available, that the results will underestimate
the extent of the critical curve lying between the declination
points but the predicted extension, in this portion of the
curve, should be of the right order of magnitude,

Ames Aeronautical Labow rtory
National Advisory Committee for Aeronautics,
Moffett Field, Calif.
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APFAEND IX

List of Symbols

8, velocity of sound in the free stream

e chord leneth of airfoil

1 section lift coefficlent
1

clM-O low—speed section lift coefficient

c} 5 incremental additional 1ift coefficient
a

clba incremental basic 11ift coefficient

M Mach number (velocity divided by velocity of sound)
=Py
Ao

pressure coefficlent <

Pu=0 pressure ccefficient under low—speed conditions

Py pressure—~coefficient distribution over base profile

P chordwise 1ift distridbution (difference between pressure
coefficients on upper and lower surface of airfoil)

Pa chordwilse 1ift distribution produced by sdditional load
distribution

Pb chordwise 1ift distridution produced by basic camber—
line loading

PS incremental load distridbution produced by flap deflection

Pa6 incremental gdditional load distribution produced dy

flap delfection
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Au

Av

i

p

incremental bagsic load distribution produced by flap
deflection -

basic load distribution for infinitesimally thin airfoil

ineremental bagic load distribution for infinitesimally
thin airfoil

static pressure

. l .2
dynamic pressure Epv
radius of curvature

increment of loczal velocity produced by basic 1lift
distribution on airfoil

local velocity

increment of local velocity produced by additional 1ift
distribution on airfeil

velocity of the free stream

distance along chord measured from lendine edge of
airfoil

ordinate of camber line measured from chord line
ratio of specific heats (cp/cv = 1.4)

angle of flap deflection

variable defined by equation 2x = c(1l — cos 8)
tangent of angle &

density

Subscripts

o}

cr

free~stream conditions
critical conditions
lower surface of the airfoil

upper surface of the airfoil

o
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Figurs 1.- Equivalent camber line for airfoil wifh plain flap.
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Figure 2.- Critical Mach number Moy variation with high-speed 1lift
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Figure 3.~ Continued.
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(c) NACA 641-210 airfoil section.
Figure 3.- Continued.
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(d) NACA 641-212 airfoil section.
Figure 3.- Continued.
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